Towards a Benchmark for Low-power Wireless

EWSN’18, February 15
Madrid

@ iot_bench

Simon Duquennoy
on behalf of the IoT Benchmarking consortium
What is this about?

- Almost two decades of WSN / IoT wireless research
- ... and yet no standard way to evaluate!

- Either we are done
 -> switch to next topic
- ... or we believe more research is needed
 -> then we need a benchmark!
A little case study

• Manually gathered stats from papers
 • 2004 – 2016
 • Only periodic data collection here
What we mean with a benchmark

• Challenges in evaluation of low-power wireless protocols
 • Variety of settings: deployment, metrics, application scenario..
 • Comparing against reference implementations is hard
 • Comparison: protocols vs. protocols+platform

• Benchmark: a set of tools and practices for performance evaluation
 • Enables fair comparison
 • Enables repeatability (to a certain extent..)
 • *as a complement to custom evaluations*
History

• 2016, June
 • Small group (Olaf, Carlo, Marco and I) discuss the idea of a benchmark

• 2016, August
 • Poster submitted to SenSys (11 unique affiliations)
 • Drafts goals and challenges

• 2017, February
 • Ad-hoc meeting at EWSN, Uppsala
 • Group expands

• 2017, May
 • Plenary meeting in Milan
 • Group expands

• 2017, October
 • Plenary meeting in Stockholm
 • Group expands

• 2017, December-onwards
 • Bi-monthly telcos, face-to-face when needed
The current team

- Simon Duquennoy (RISE SICS)
- Olaf Landsiedel (Chalmers)
- Carlo Boano (TU Graz)
- Marco Zimmerling (TU Dresden)
- Omprakash Gnawali (Univ. Houston)
- Mobashir Mohammad (NUS)
- Mun Choon Chan (NUS)
- Lothar Thiele (ETHZ)
- Jan Beutel (ETHZ)
- Luca Mottola (Politecnico di Milano and RISE SICS)
- Thiemo Voigt (Uppsala Univ and RISE SICS)
- Thomas Watteyne (Inria and Linear Technology)
- Xavier Vilajosana (Open University of Catalonia)
- Gian Pietro Picco (University of Trento)
- Anna Förster (Universität Bremen)
- Idrees Zaman (Universität Bremen)
- Ramona Marfievici (Cork Institute of Technology)
- Koen Langendoen (TU Delft)
- Marco Zuniga (TU Delft)
- Kay Römer (TU Graz)
- Hyung-Sin Kim (UC Berkeley)
- JeongGil Ko (Ajou University, Seoul)
- Jeongyeup Paek (Chung-Ang University, Seoul)

- Europe-heavy (and many here today)..
- .. but some US and Asia 😊
- You’re welcome to join!!
What we do

• Discuss what a benchmark might be
 • Talk with other communities (e.g. Robotics, DB)
 • Talk with IoT companies (5 were invited in Stockholm meeting)
 • Tackle research challenges (e.g. around reproducibility)
 • Define an initial benchmark

• Try to coordinate as a community
 • Sync with EWSN Dependability Competition
 • SenSys’16 poster
 • CPSBench: a workshop of CPSWeek’18
 • Dagstuhl?
 • Research grants..
Design space

• The accuracy – generality tradeoff

• Currently looking into two approaches
 1. Specification only (most general)
 2. Standardized testing architecture (most accurate)
Approach #1: Specification only

• Metrics
 • Can be *input*, *observed*, or *output*
 • Ex. *input*: traffic load & pattern
 • Ex. *observed*: wireless noise
 • Ex. *output*: delivery, latency, energy

• Profiles
 • Assignment of concrete values to *input*
 • And interpretation of *observed* and *output*
 • Ex: data collection
 • Input: nodes: 100, #sources: 99, #destinations: 1, traffic load: from .1 msg/min to 1 msg/min, ...
 • Observe: link qualities, external interference, ...
 • Output: delivery, latency, ...
Approach #2: Standardized Testing Architecture

- Builds on the same concepts as #1: metrics and profiles
- Key idea: separate networking code from experiment scenario
 1. Node runs networking code
 2. Testbed runs experiment: e.g. uses GPIO/serial to instruct nodes and measure perf. (similar to the Competition, but standardized/portable to any testbed)

- Benefit
 - Fully automated
 - Rules out mis-interpretation of profiles, etc

- Drawbacks
 - More complex and strict
 - More infrastructure maintenance
Design space – stepping back

• There are many more plausible design points..
• Which one should we focus on first?
• How to foster adoption?
 • Balance with comparability/repeatability

1. Specification only
2. Standardized testing architecture
Conclusion

• Thanks!
• Is this useful?
• Are we on the right track?
• Other ideas?
• Come and see our poster!
• Next, Ramona about the CPSBench workshop 😊
We are also organizing a workshop: CPSBench

- 1st Workshop on Benchmarking Cyber-Physical Networks and Systems
- Co-located with CPSWEEK (IPSN, RTAS, ...) in Porto on April 10, 2018
- Looks at benchmarking challenge from a CPS perspective: control, embedded, real-time, robotics, communication, machine learning, ...

https://cpsbench2018.ethz.ch/
CPSBench: Organizers and PC members

General Chair
Omprakash Gnawali
Tarak Abdelzaher (UIUC, USA)
José Araújo (Ericsson Research, Sweden)
Carlo Alberto Boano (TU Graz, Austria)
Berk Calli (Yale University, USA)
Patricia Derler (National Instruments, USA)
Simon Duquennoy (RISE SICS, Sweden)

TPC Co-Chairs
Sebastian Trimpe
Marco Zimmerling

Web Chair
Romain Jacob
Karl Henrik Johansson (KTH, Sweden)
Matteo Matteucci (Politecnico di Milano, Italy)
Ian Mitchell (University of British Columbia, Canada)
Luca Mottola (Politecnico di Milano, Italy)
Lothar Thiele (ETH Zurich, Switzerland)
Klaus Wehrle (RWTH Aachen University, Germany)

Publicity Chair
Ramona Marfievici

Publication Chair
Anna Förster
CPSBench: Aims and scope

- Bring together researchers and practitioners from the different CPS sub-communities to
 - Learn about each other’s challenges and evaluation methodologies
 - Reflect on success stories (e.g., existing benchmarks in a particular community) or failures in using standard evaluation criteria
 - Debate future research agendas to jointly define the performance metrics and benchmark scenarios that matter from a system’s perspective

Consider attending and drop us a line if you want to get involved!